Search This Blog

Sunday, 31 December 2017

New Year in Sydney

First, here are some samples of a Sydney New Year's Eve, taken from expensive seats on Pinchgut, two years back. This year, we and our standard NYE friends will dine at a quiet restaurant away from the lowing herd, then walk back to our house to see the New Year in, on a north-facing balcony, looking away from the glows in the sky. After almost 50 years of harbour fireworks (the first we saw were in 1970), we don't like the discomfort and the heaving crowds.

Beforehand

Things happened to amuse the waiting crowds. Remember the bridge, because it plays a role.

The sun set, but it wasn't 9 pm yet.
Finally, the show began. Look for the bridge and the Opera House.

Look for the bridge and the Opera House. These are our tribal icons.






Among the guests on Pinchgut were two Scots couples who come out each year for the fireworks on the harbour. I fear they may have had to find a new vantage point this year, as the restaurant on the island seems to have disappeared.  Our Australian celebration of New Year's Day owes a lot to our Scots heritage.  Perhaps I am a biased observer.  As my surname implies, my ancestors were Scots.  My family has been here since early colonial days, but we still keep many of the old traditions intact.

Even in my generation, there has always been at least one piper in the family to welcome in the New Year with a skirl, and the bagpipe remains my favourite solo instrument, for I spent my earliest New Year's Eves, standing directly beneath my father's chanter (that's the lowest pipe, the one you twiddle on), taking in the sound and the smell of the pipes.

Perhaps I will learn to play the pipes when I retire.  I will be in good company if I do, for I know of just the pipe band for me, made up entirely of old and retired ‘Scots’, most with broad Australian accents.  Some traditions die hard, even under an Antipodean sun.

Others may celebrate their New Year's Day by nothing more than a day at the beach, or around a suburban backyard pool.  Still, some hardy traditional types will spend the day at a Highland Gathering, engaging in all sorts of strange activities like tossing the caber and wild dancing to pipes that serve to remind them of the hangover they still bear from the night before.

Traditionally, anybody can be a Scot on that day.  My father knew a champion piper called Colin Campbell who was, as it happens, one of the original Australians.  In those days, whites would stress further that Colin was a ‘full-blooded aboriginal’.  Be that as it may, he would appear each year in the New Year's Day piping competitions to play his own spirited rendition of ‘A man's a man for a'that’, and often to take prizes for his playing.  Those who know their Burns, of course, will see Colin's point . . .

But Sydney has always had its unusual Scots.  A hundred years ago, a Chinese merchant of Sydney, one Quong Tart by name, was popularly known to one and all as ‘Quong Tartan’.  He came to the Australian goldfields as a small boy, and was taught English by Scots people, so his accent was well suited to his nickname.  Historical accounts mention that he was an accomplished reciter of the poems of Robbie Burns, including, I imagine, ‘A man's a man for a'that’.

One of the things which strikes tourists about Sydney is the huge range of faces on the street, but this is by no means new.  Now, we call it ‘multiculturalism’, but it used to happen a hundred years ago as well.  Here is what ‘James O'Connell’ wrote in 1836, preserving his spelling:

In George street, the grand thoroughfare, the visiter is amused with the motley group of divers nations, kindreds, and tongues that he encounters.  New Holland is less exclusively the residence of convicts than the reader may have imagined.  Settlers and visiters from all portions of the globe — Spaniards, Frenchmen, Englishmen, Americans, Chinese, Malays, Kanakas or South Sea Islanders, the latter arriving in whale ships, add variety to a scene which, without them, would be varied enough.

‘O'Connell’ was an escaped convict who had clearly spent several New Year's days here before he escaped to Ponape (Pohnpei) in what was then the Caroline Islands, and later to the United States, but let us stay with the present, for now.

Other Australians will spend New Year's Day in the bush.  No, not in A bush, but in the bush.  That is, in what other lands might call a wilderness, a forest, a jungle, or even a heath.  To us, these are all one and the same: they are all ‘bush’.  Where other nations go hiking or back-packing, we go bush-walking.  Last century, we never had highwaymen, but we always had our bushrangers.  We took the word "bushranger" from the Americans, who used it to mean anybody who roamed freely through the forests, but it soon took on the meaning of an armed robber.

‘Bush’ can also mean anything rural, not of the city, as in ‘the city or the bush’, or as in a classic ribald poem, ‘The Bastard from the Bush’, but mainly it refers to those patches of native Australian vegetation which are to be found, even in the middle of a city of nearly four million people like Sydney.

New Year's Day will be a hot and listless high summer day, so the sensible thing to do is to find a shady spot beside a creek, to swim a bit, to eat a bit, to drink a bit, to relax and enjoy the quietness.  One of the joys of Sydney is that you can find clean cool water in a quiet gully, within an hour of the very centre of the city.  The most preferred housing sites have a harbour view, closely followed by those looking over, and surrounded by, bush.

Of course, this can also a drawback, for those patches of bush can flare up into cruel bushfires, but that is something most people prefer not to think about on New Year's Day.  It is high summer, there is cricket on TV, beer in the fridge, and tomorrow will be a time to relax, at least for now.

I might just spend a few days in the bush. After all, ours is an evolving culture.

Still, bliadhna mhath ur.

Saturday, 30 December 2017

Frogging

This went out originally as an ABC Radio National broadcast on Ockham's Razor. It has been edited to disguise locations.

It is a warm and moonless Saturday night.  It is raining, the cloud is down so low on the headland that it qualifies legally and scientifically as mist, and I am wandering around in the dark through dense heathland, half a kilometre from home, with the rain soaking through my broad-brimmed hat, and running down my neck.  Every so often, I stop and shout ‘FROG!’ as loudly as I can.  Then I raise my dripping hat to hear if anything answers.

It is probably fair to ask whether these are the actions of a sane man.  I say they are, but then I know what I am doing.  Or that is my story, at any rate, and I would like to stress here my non-membership of that strange breed, the compulsive froggers, people who sometimes care more for frogs and toads than they do for humans.

I know that I retain my sense of proportion, my sanity, for out there, alone in the dark, I am still rational enough to ask myself what I am doing there.

I am on a headland near Sydney Harbour, in a large patch of bush where there are three, or possibly four species of frog.  After steady rain, there will be equally steady seepage out of the sandy soil for some weeks, and the frogs have a chance to rebuild their numbers.  They gather near the trickling water, they call, and they mate.  Their tadpoles will hatch a few days later and rush through a hurried childhood into premature adolescence, before they join their parents on the drying land.

As a child, I collected tadpoles once or twice in a glass jar and brought them home, but I never succeeded in growing any up to be frogs.  As a young adult, I maintained a genial interest in frogs.  I learned to feed the tadpoles on lettuce, to get them to the adult stage.  Most importantly, I learned to provide them with a rock to rest on, a way out of the water.  Emergent frogs have lungs, not gills, and they will drown if they cannot scramble out.

Many years ago, as a young biology teacher, I acquired by devious means a lockable glass-fronted cupboard, designed for chemical storage.  I bolted it to a corridor wall where passing students could look in.  I bought a narrow glass tank and went through a number of frog-breeding cycles over several years, but I was still not a compulsive frogger.  I just thought it was good for students to have a small ‘zoo’ to look at.  Tadpoles and frogs were a major part of what happened there, along with assorted invertebrates and static demonstrations, but I was definitely not a compulsive frogger.

Later, I moved house, and we soon found that frogs had joined us in our garden.  We got up one rainy morning to find that we had a frothy mass of frog eggs in plastic bowl that lay abandoned in the garden.  Delighted, I dug a small pond, and transferred the eggs across.  Soon after, when I had to build some new stairs and a landing into the backyard, I constructed a much larger pond in the wasted space underneath the stairs.  Friends thought this a little eccentric, but I knew I was still not a compulsive frogger.  Even the friends could see that, when I explained it to them.

Some years later still, I found myself working in a museum, and I was cajoled into working on a project called Frog Watch, that involved both frogs and computers.  I was involved more as a writer and computer person, though I found myself getting more involved in froggy things.  But still I resisted the temptation to become a compulsive frogger.

I met quite a few compulsive froggers while I was there.  One of them noticed a small population of tadpoles sharing a pool with some mosquito fish.  This surprised him, for mosquito fishes will attack most tadpoles, and eat them, working up from the tail.  Most people would have passed on to other things, but this frogger thought about it, and concluded that the tadpole must taste rather awful.  A true man of science, he tried eating several of the raw tadpoles.  They tasted vile, a discovery which may have waited forever, but for the dedicated commitment of this compulsive frogger.

I met a fellow worker, who kept several pet frogs in a tank in his office, where they responded every time his phone rang.  Later, I edited a frog book for another colleague, who kept a one-eyed tree frog in his workshop (it lost the other eye when a truck ran over it, but my colleague nursed it back to health).  I knew I was still not a compulsive frogger, not by any of the rational standards that I could construct.

Pseudophryne australis, otherwise the Sydney red-crowned toadlet.
CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1185340
Then I moved house again.  Soon I started to notice the several frogs living around my house.  I bought tapes to identify them (you ‘earball’ frogs rather than eyeballing them), and I started to learn how to provoke certain species to call.  Then one day I found a small frog in my front yard, did a quick double-take.

With delight, I realised that the seepage drain near my front gate was home to a member of an endangered species, a Sydney Red-crowned Toadlet.  I was still not a compulsive frogger, but now I was distinctly interested.

Since then, I have been trying to map the frog's distribution in the local area by going out in wet weather and listening for the toadlet's distinctive call.  Somebody in Canberra told me once that the Corroboree Frog, another member of the same genus, will answer if a male human voice bellows ‘FROG!’ nearby.  Testing that theory is what leads me out into the wilderness on damp still nights, shouting in the dark.  That and finding out just how healthy the local population is, but I am still not a compulsive frogger.

My little toadlet lives in some two hundred pockets of land around Sydney.  In all likelihood, each population carries different genes, but there is no flow of genes between the different localities.  Each group is an isolated remnant.  If any group dies, it will not be replaced by new colonists moving in, for they cannot swim over the salt water of the harbour.  There is no bridge for them to use, and pioneers cannot hop over the 5 kilometres of settled ground to get here from the next pocket.
The toadlet's distinctive  underbelly.
By Tnarg 12345 at the English language Wikipedia, CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=2652554

If any isolated group dies out, its small part of the genetic diversity dies with it.  The special genes that they alone may have are no longer available to the population as a whole.

It is a simple enough principle: even the ancient Romans understood it, when they coined the phrase ‘Divide et impera’ — divide and rule.  It is a cold implacable logical law, and its operation may one day wipe out all of the toadlets.

But why should we worry about one little frog, when there are hundreds of other species in Australia?  Many years ago, Paul Ehrlich taught us that we should think of an ecosystem as rather like an aeroplane which can lose a few bits and still fly.

I prefer to see an ecosystem as a steel bridge.  You can take one rivet away from a bridge, and nothing will happen.  You can remove another rivet, and the bridge will be as steady as ever.  You may even take some more, and still do no harm.  But somewhere along the way, you will take out one rivet too many, and the bridge will come tumbling down.  Ecosystems are robust, they can manage without some of the key species, but sooner or later, they start falling apart.

Biodiversity in a species works the same way.  Eliminate a few unusual genes, and no harm will arise, not yet.  Take a few more rare genes away, and there will still be no problem.  Sooner or later, though, some other change will mean that one of those eliminated genes will be needed.  By then, it won't be there, because the gene's minders have died, and the gene has died with them.  All over Australia, the frogs and toads are reminding us, calling ‘rivet, rivet’, but nobody cares, for the frogs' bridge is still standing.  It sags a bit, it may sway perilously from time to time, but it is still there.

It is a warm and moonless Saturday night.  It is raining, the cloud is down so low on the headland that it qualifies legally and scientifically as mist, and I am wandering around in the dark through dense heathland, half a kilometre from home, with the rain soaking through my broad-brimmed hat, and running down my neck.  Every so often, I stop and shout ‘FROG!’ as loudly as I can.  Then I raise my dripping hat to hear if anything answers.

I know now why I am there in the dripping mist.  I am still not a compulsive frogger, but I think I understand them now.

Monday, 18 December 2017

Food preservation

Here's a small sample from Not Your Usual Science, which is now finished, but getting a last polish. That will take a while, as it ended up at 460,000 words. It will be out on Kindle in a month or two.
The illustrations are from a recent visit to Sri Lanka, where I saw fish being sun-dried.

Negombo beach, tuna.
Nobody ever sat down and thought “today, I will invent technology and change society”. It was more likely to be a matter of certain aspects of technology emerging, after which people used the new ideas, and only realised later that they had changed their society. Even more likely, they found a new way, used it, and changed their habits, which in turn changed society.


Before the development of agriculture, people had to live a nomadic life, moving after the food, following the seasons. Once they had ways of growing food near a permanent home, they could settle in one place, but then they needed ways to preserve and/or store food, to stop it going bad.
A closer view of the tuna

The process would have begun slowly, because even nomads knew how to smoke meat over a slow fire, or use sunlight to make beef jerky. Fish could also be dried or smoked. Before people knew about germs, salting was a good way to stop germs growing on meat.

Water can flow out of living cells and it can also flow back in through the cell membranes. High salt concentrations outside a cell stop water going back in, so any microbes in salted food soon dry up and die. When beef or other meat is dried, the salts in the meat are left behind, and once again, the salt levels stop bacteria and fungi from growing. (If you want to know what is going on here, the key word is osmosis, but right now, we are discussing history.)

Bees have used the drying method for millions of years, collecting nectar and fanning it to evaporate off most of the water, changing the nectar to honey. Spores and germs that fall into the honey simply cannot grow. When sugar cane is crushed, the juice is boiled and this concentrates the solution to stop any fungi or bacteria surviving in it.
All sorts of fish are dried.


By good luck, heating the cane juice also destroys a natural enzyme in the sugar cane which breaks the sucrose molecule down into simpler sugar molecules which are less useful, and the whole sugar industry depends on destroying this enzyme.

Islamic societies around the Mediterranean followed to a greater or lesser extent the teaching in the Quran that drinking alcohol was wrong, but even pious Muslims still liked cooling drinks. Highly concentrated fruit juice and sugar would keep forever, as nothing could live in it, but this cordial could be mixed with cool water to make a pleasant drink.

They are mainly carried inland and sold. Without fish, the
inland folk would have an iodine deficiency and goitre.
In a very real sense, the population depends on dried fish.
When the Egyptians preserved dead bodies, they used a similar method, but they replaced ordinary salt with natron, a mixture of sodium carbonate and bicarbonate which, as we have seen, was also used in glass making. The mummies would have tasted better with salt, but as nobody planned to eat them, natron was fine.

All the same, it would be reasonable to suspect that the Egyptians knew about salting meat before they made mummies, which would mean they must have started salting meat at least 4500 years ago.
Whatever method is used, preservation either sets out to kill the food-spoiling microbes, or to slow them down, making the food last longer. Warming up food makes a perfect environment for germs to multiply, and “food poisoning” often begins with warmed-up food being set aside and then heated again.

Geoffrey Chaucer was an English poet and scholar who died in 1400, as the Middle Ages came to an end, but he knew all about this danger. In his Canterbury Tales, Chaucer has a character accuse a cook of ignoring this risk. The Jack of Dover mentioned here was almost certainly a pie of some sort:
And many a Jakke of Dovere hastow soold,
That hath been twies hoot and twies coold.
 In more modern (but similar) language, this says:
And many a Jack of Dover hast thou sold,
That had been twice hot and twice cold.
Refrigeration is a good way of slowing down germs, but as Chaucer knew, more than 600 years ago, the cook’s habit of re-warming food made it potentially deadly. Unlike Chaucer, we realise that repeated warming of food can increase the number of bacteria to dangerous levels, but even without knowing about germs, Chaucer knew that reheated food was dangerous.

We can look at a food preservation method today and see the science which lies behind it, but each of the methods must have been originally discovered by chance, perhaps when an animal drowned in a brine pond, and was later found, free of rot.

Food left too long over a low fire may have been dried or smoked, wheat and barley stored in pots in hot dry places stayed dry and undamaged, and so on. Freezing of dead animals caught in a snowdrift may have preserved their meat, but looking into this actually killed one scientist, Francis Bacon, also known as Lord Verulam:
Mr Hobbs told me that the cause of his Lordship’s death was trying an Experiment … it came into my Lord’s thoughts, why flesh might not be preserved in snow, as in Salt. They … bought a Hen, and made the woman exenterate it, and then stuffed the body with Snow, and my Lord did help doe it himselfe. The snow so chilled him that he fell immediately ill … they put him into a good bed, warmed with a Panne, but it was a damp bed that had not been layn-in in about a yeare before, which gave him such a colde that in 2 or 3 dayes … he dyed of Suffocation.
— John Aubrey, discussing Francis Bacon (1561 – 1626), Aubrey’s Brief Lives, 179.
Whichever way the food was preserved, even without knowing anything about the spores, bacteria or fungi, humans stopped their food spoiling. The result was that people were able to live through bad seasons or times when there was no food to be had. They were also able to store food such as turnips or hay to keep animals alive, and dried foods were light enough to carry on long journeys.

Unfortunately, some preservation methods also destroyed any vitamins that might have been in the foods. Sailors and other travellers who tried to live on salt meat and ship’s biscuit (a very dry sort of bread) risked developing ‘disease’, as scurvy used to be called. On short voyages, the passengers and crew had enough vitamin reserves in their bodies to stay fairly healthy, but as voyages grew longer, people began to sicken, or even die, killed by the preserved food they thought was keeping them alive.

Pickling with a mixture of salt and vinegar can stop vegetables spoiling. Salt does not destroy vitamin C, the cure for scurvy. Salt meat has no vitamin C because the original meat had none, but pickled cabbage, sauerkraut, still has most of the vitamin C found in the original cabbage. Lime juice was boiled to a concentrated germ-resistant syrup. That usually kept some of its vitamin C, so long as the lime juice had not been boiled in copper pots. Copper surfaces are very good at destroying the vitamin.

Preserved foods allowed Europeans to discover the whole world and then dominate it. It was a mixed blessing, when you consider how they treated those they dominated!

Thursday, 14 December 2017

Bushfire backgrounder

Bushfires are a part of high summer in Australia. In winter each year, Australians carry out control burns, small fires aimed at reducing the amount of standing fuel. These may help to contain the fires or stop them, but given the wrong weather, no amount of control burning can stop fires happening somewhere. The science is against any other outcome.

A note first about terms: in Australian English, ‘bush’ is what others might call forest, heath or scrub. The term was brought to Australia by early settlers who had previously lived and worked in North America, so this quintessentially Australian term is in fact an early American import! A ‘bushfire’ is a fire running wild in the bush. 

Many botanists in the past have been forced to change their research to ‘bushfire regeneration’ after their plots were burned out, and the cost of fires has meant that there has been a great deal of research on the topic.

First, let us consider the biology of bushfire in Australia. Fire is a natural part of the bush cycle, so the natural environment should survive fairly well, just so long as there is no heavy rain, too soon afterwards. That is why the fire fighters will concentrate on saving property and lives.

They will fight fire with fire, knowing that what they burn deliberately will grow back again, refreshed by the flames. Australia’s bush, after all, lived with fire for many millions of years, long before humans came here. The bush will grow back after the fires have done their worst.

Next, let us consider the geology and geography of urban Sydney bushfires. When the first Europeans reached Australia in 1788, they settled in what is now Sydney, either on flat land near the sea or on the ridges.

Sydney sits on a bed of sandstone, two to three hundred metres thick, with joints running north-south and east-west. It was laid down in a Triassic delta, rather like Bangladesh today, with a huge river braiding back and forth, washing out the finest minerals, the clay and other mineral-rich sediments, and leaving just the quartz grains behind. The grains were rounded, and had probably been in an earlier sandstone somewhere else, but they settled where Sydney is now, almost 200 million years ago, waiting to play their part in shaping modern Sydney.

Some of the sandstone beds are better bonded than the others within this ‘Hawkesbury sandstone’, but they are otherwise pretty much the same, right through the deposit. (Hawkesbury, in case you are wondering, was a minor 18th century English politician who had a local river named after him. The stone was later named after the river.)

In the last Ice Age, the sea level around Australia was much lower, due to all the water tied up in the northern glaciers. Then, today’s Sydney Harbour was a river valley, shaped by the jointing pattern in the sandstone. Joints, planes of weakness in the stone, were eroded into crevices which became valleys, with the more resistant sandstone forming ridges. Later, the sea level rose, creating a ‘drowned river valley’ with a characteristic fern leaf shape, the modern Sydney Harbour. A few of the higher ridges have a shale capping which offered rather better soil than the sand which derives from sandstone.

The first whites settled on the coast, then headed (a) for the flat land of the ridges, where roads were easier to build, and (b) for the richer soil on the shale-capped ridges. First, they built small farms and market gardens, then roads were built to service these, and soon the residences followed, as a young city grew. Down in the valleys, close to the sea, the bush was left alone. It was too hard to build roads down to there, and so people left it alone. Even today, much of the valley bush is preserved, with homes sitting on the ridges above: a sure recipe for trouble, because heat and flames rise.

Fuel builds up in the bush over a period of years. Gum trees shed their bark, branches and leaves, smaller shrubs in the under-storey die and are replaced by others, and after a few years of recovery, the lowest three metres or so is a closely packed mass of dead and drying twigs. Until they break and fall, these pieces of finely divided wood rot very little in the dry bush, and even on the forest floor, rotting is a slow business, for the sandy soil drains fast after rain. Heath regenerates fast.

Some of them can be ready to burn again, just six months after a major fire. Other areas can take ten to twenty years to be ready for a major burn. As a general rule, after 40 or 50 years, any area at all will be ready to sustain a ‘blow-up fire’.

Now for the physics of bushfires in Australia. When any fire starts, it begins very slowly. It takes time to develop from a maker of smoky wisps into a maker of misery. The dangerous fire is one that roars and gusts through the tree tops, the crowns of the trees, a firestorm traveling at 50 kilometres an hour or more, leaping ahead of itself, and destroying all in its path.

Crowning fires can cross 400 metres of open water, as the sparks and burning rubbish fly up in the roaring flames, and then tumble down on the other side. Any footage you see on your local TV will be of these crowning wildfires.

You will see flames gouting 30 metres or more into the air, searing the upper branches of gum trees, leaping across the fire breaks, and almost impossible to control until the weather improves.

Now let us look at the question of weather and bushfires. The weather is the last factor in the bushfire equation. At the moment, we have hot dry nor-westers, gusting at up to 50 knots, pushing the fires downhill as well as up. Usually, a fire front can be beaten as it crests a ridge.

Fires go fast uphill and slow downhill, but they do run downhill. On the forward side of any advancing fire, you will find a wind blowing towards the flames at the front of the fire. If you can set small fires on the far side of a ridge, they will gather strength and rush up, sucked in by the fire wind from the blaze on the other side, until the small fires meet the major fire coming the other way.

In this style of fire-fighting, the major fire limps over the ridge, only to find that most of the fuel in its path has already been burned. Starved, it falters like a wounded beast, and puny men and women rush in to attack it with sprays and hoses. But with high winds, this ploy is too dangerous to attempt, as the fire lighters in its path could easily be over-run, as it leaps over the fire break they have just made.

Within hours of the fire, the seeds will be dropping from the woody fruits of the she-oaks, Hakeas and Banksias, and the trunks and underground stems of other plants will already be starting to shoot. In three weeks, there will be green all over the bush. In time, the bush will recover, and so will the animals. The homes can be rebuilt, and lives, so long as they have not been lost, will go on. It is all part of the natural cycle. The animals will take longer, but some will survive, and others will move in from unburnt areas, but recovery is a slow natural cycle.

Thursday, 30 November 2017

Australian Backyard Earth Scientist

I have just published my peculiar novel, Sheep May Safely Craze on Kindle. This is a comic romp through history, literature, higher mathematics, lower mathematics, logic, mythology, cosmology and the dark side of pea soup, and it is available on Kindle. You can read more about it here. 

Anyhow, I have now turned back to earth science for younger readers again, as the editor's responses come my way from the Number One editor at the National Library of Australia, Jo Karmel. This is the fifth book we have worked on together (or seventh, if you count new editions separately), and there's another on the way

Anyhow, by the time we are finished, Australian Backyard Earth Scientist is going to be a good book, but here are some left-overs, more suited to older readers. These might have been epigraphs, but we don't do those for younger readers. Here are the unused quotes, and a few pics from my short-list (~250 shots at last count).

Earth science

Folds, Mt Pilatus, Switzerland.
A rolling stone gathers no moss.
— Proverb, dating back to the 16th century.

To a naturalist nothing is indifferent; the humble moss that creeps upon the stone is equally interesting as the lofty pine which so beautifully adorns the valley or the mountain: but to a naturalist who is reading in the face of the rocks the annals of a former world, the mossy covering which obstructs his view, and renders indistinguishable the different species of stone, is no less than a serious subject of regret.
― James Hutton, Theory of the Earth, vol. 3, 46.

A rock or stone is not a subject that, of itself, may interest a philosopher to study; but, when he comes to see the necessity of those hard bodies, in the constitution of this earth, or for the permanency of the land on which we dwell, and when he finds that there are means wisely provided for the renovation of this necessary decaying part, as well as that of every other, he then, with pleasure, contemplates this manifestation of design, and thus connects the mineral system of this earth with that by which the heavenly bodies are made to move perpetually in their orbits.
— James Hutton. Theory of the Earth, with Proofs and l1lustrations, Vol. 1 (1795), 276.

An historian should, if possible, be at once profoundly acquainted with ethics, politics, jurisprudence, the military art, theology; in a word, with all branches of knowledge … It would be no less desirable that a geologist should be well versed in chemistry, natural philosophy, mineralogy, zoology, comparative anatomy, botany; in short, in every science relating to organic and inorganic nature.
— Sir Charles Lyell, Principles of Geology, Vol. 1, 3, 1835.

…the successive series of stratified formations are piled on one another, almost like courses of masonry.
— William Buckland, Geology and Mineralogy, Considered with Reference to Natural Theology, Bridgewater Treatise 6, Vol. 1, 37, 1836.

Folds and faults, S. coast NSW.
[When] spring and summer come round, how easily may the hammer be buckled round the waist, and the student emerge from the dust of town into the joyous air of the country, for a few delightful hours among the rocks.
— Sir Archibald Geikie, in The Story of a Boulder: or, Gleanings from the Note-book of a Field Geologist (1858), viii.


Apart from its healthful mental training as a branch of ordinary education, geology as an open-air pursuit affords an admirable training in habits of observation, furnishes a delightful relief from the cares and routine of everyday life, takes us into the open fields and the free fresh face of nature, leads us into all manner of sequestered nooks, whither hardly any other occupation or interest would be likely to send us, sets before us problems of the highest interest regarding the history of the ground beneath our feet, and thus gives a new charm to scenery which may be already replete with attractions.
— Sir Archibald Geikie, Outlines of Field-Geology (1900), 251-2.

Experimental geology has this in common with all other branches of our science, petrology and palaeontology included, that in the long run it withers indoors.
— Phillip H. Kuenen’ 'Experiments in Geology', Transactions of the Geological Society of Glasgow (1958), 23, 25.

No Geology without Marine Geology!
— Phillip H. Kuenen, Title of paper, Geologische Rundschau, 47(1), 1958, 1 – 10.

Geology itself is only chemistry with the element of time added.
— Ralph Waldo Emerson, Aspects of Culture, The American and Continental Monthly, Volume 1, April 1870, 5.

Beneath all the wealth of detail in a geological map lies an elegant, orderly simplicity.
— Tuzo Wilson, As quoted G.D. Garland in obituary 'John Tuzo Wilson', Biographical Memoirs of Fellows of the Royal Society (Nov 1995), 552.

Atoms

Hexagonal packing can turn up unexpectedly.
To understand the very large, we must understand the very small.
— Democritus (470 – 380 BC)

… in the field some amount of information concerning igneous rocks can be obtained by rubbing down the chip on a grindstone and using a whetstone, carborundum file, or water of Ayr stone for the final grinding. By these and other methods … there are obtained slices of rocks which, though thick, uneven, scratched, and all that is bad, from the point of view of the professional maker of thin sections, are nevertheless capable of yielding much information. With a pocket lens it is possible to make out from such a 'thin' section the nature of the minerals present, the texture and the nature of the rock.
— Frank Rutley, Elements of Mineralogy, 22nd edition, 1915, p. 104.


The difference between a piece of stone and an atom is that an atom is highly organised, whereas the stone is not. The atom is a pattern, and the molecule is a pattern, and the crystal is a pattern; but the stone, although it is made up of these patterns, is just a mere confusion. It's only when life appears that you begin to get organisation on a larger scale. Life takes the atoms and molecules and crystals; but, instead of making a mess of them like the stone, it combines them into new and more elaborate patterns of its own.
— Aldous Huxley (1894 – 1963), Time Must Have a Stop. London: Chatto and Windus, 1945, chapter 14.

A crystal lacks rhythm from excess of pattern, while a fog is unrhythmic in that it exhibits a patternless confusion of detail.
— A. N. Whitehead (1861 – 1947), An Introduction to Mathematics. Oxford: OUP, 1948.

 Change

One generation passeth away and another generation cometh: but the earth abideth forever.
Holy Bible, Ecclesiastes, 1:4

To explain the observed phenomena, we may dispense with sudden, violent and general catastrophes, and regard the ancient and present fluctuations . . . as belonging to one continuous and uniform series of events.
— Sir Charles Lyell (1797 – 1875), Principles of Geology.

Rather more than a century ago Sir Charles Lyell, then an Oxford student, noticed that a small lake on his father's Scotch estate was capable of depositing an appreciable layer of limestone on its bottom within quite a few years — and on his discovery that rocks could be built up as well as worn away is based a large part of modern geology.
— A. W. Haslett, Unsolved Problems of Science, London 1937.

Thermal mud, Orakei Korako, New Zealand
Compared with what we think of as long periods in our everyday calculations, there must have been enormous time and considerable variations in circumstances for nature to lead the organisation of animals to the degree of complexity and development that we see today.
— Chevalier de Lamarck (1744 – 1829), Philosophie Zoologique.

We may confidently come to the conclusion, that the forces which slowly and by little starts uplift continents, and that those which at successive periods pour forth volcanic matter from open orifices, are identical.
— Charles Darwin, Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World, 2nd edn. (1845), ch. XIV, 311.

… millions of our race are now supported by lands situated where deep seas once prevailed in earlier ages. In many districts not yet occupied by man, land animals and forests now abound where the anchor once sank into the oozy bottom.
— Sir Charles Lyell, Principles of Geology, Vol. 1, 373, 1835.

While a glacier is moving, it rubs and wears down the bottom on which it moves, scrapes its surface (now smooth), triturates the broken-off material that is found between the ice and the rock, pulverizes or reduces it to a clayey paste, rounds angular blocks that resist its pressure, and polishes those having a larger surface. At the surface of the glacier, other processes occur. Fragments of rocks that are broken-off from the neighbouring walls and fall on the ice, remain there or can be transported to the sides; they advance in this way on the top of the glacier, without moving or rubbing against each other … and arrive at the extremity of the glacier with their angles, sharp edges, and their uneven surfaces intact.
— Louis Agassiz, La théorie des glaciers et ses progrès les plus récents. Bibl. universelle de Genève, (3), Vol. 41, p.127. Trans. Karin Verrecchia.

On the morning of May 8th, 1902, the clocks of St. Pierre ticked on towards ten minutes of 8 when they would stop forever. Against a background of bright sunshine, a huge column of vapour rose from the cone of Mont Pelée.
A salvo of reports as from heavy artillery. Then, choked by lava boiled to white heat by fires in the depths of the earth, Pelée with a terrific explosion blew its head off.
— Fairfax Downey, 'Last Days of St. Pierre', in Disaster Fighters, G. P. Putnam's Sons.

Temperature gradients in ordinary [volcanically] quiet areas range from less than 10 to as much as 50 degrees Celsius per kilometre.
— A. E. Benfield, 'The Earth's Heat', Scientific American Reader (1953), page 71.
Volcanic bombs in the making, Mt Yasur, Tanna, Vanuatu.

Naturally a good deal of thought has been given to how the immense energy of volcanoes might be harnessed for man's use. It has been done on a relatively minor scale in several countries, notably Italy and Iceland.
— A. E. Benfield, 'The Earth's Heat', Scientific American Reader (1953), page 86.

Just as the level of Stone Age finds gives an average sinkage of 9 inches in a hundred years, so calculations based on Roman remains suggest a similar figure… Presumably it is still doing so to-day, although it will be another five hundred or a thousand years before the problem of maintaining the Thames embankment will begin to become acute.
— A. W. Haslett, Unsolved Problems of Science, London 1937. (The Thames Barrier went into operation in 1986!).

Field reversals, occurring roughly every million years, are the most dramatic of the wide range of phenomena exhibited by the earth's magnetic field. And the next reversal on Earth may not be so far away: if the current rate of decay of the Earth's dipole component is maintained, it will vanish in less than 2000 years' time.
— Jeremy Bloxham, 'Evidence for asymmetry and fluctuation', Nature, 322: 13, 1986

Time

The poor world is almost six thousand years old . . .
— William Shakespeare (1564-1616), As You Like It, IV, i, 95

There are said to be a billion billion insects on the earth at any moment, most of them with very short life expectancies by our standards.
— Lewis Thomas (1913 – ), The Lives of a Cell, Penguin Books, 1978.

We can be certain that the radiation did not change appreciably during the last 500 million years; because during all this time life existed on earth, which means that the temperature of the earth during the whole period must have been very nearly what it is today. This temperature is determined by the sun's radiation.
— Hans Albrecht Bethe (1906-000), The Sky, December 1940.

More recently, advances in physics have given us methods to put absolute dates, in millions of years, on rocks and the fossils that they contain. These methods depend on the fact that particular radioactive elements decay at precisely known rates. It is as though precision-made miniature stopwatches had been conveniently buried in the rocks. Each stopwatch was started at the moment that it was laid down. All that the palaeontologist has to do is dig it up and read off the time on the dial.
— Richard Dawkins, The Blind Watchmaker, Penguin, 1986.
 
Slate blocks, Norway.
According to this view of the matter, there is nothing casual in the formation of Metamorphic Rocks. All strata, once buried deep enough, (and due TIME allowed!!!) must assume that state,—none can escape. All records of former worlds must ultimately perish.
— Sir John Herschel, Letter to Mr Murchison, quoted in the Appendix to Charles Babbage, The Ninth Bridgewater Treatise: A Fragment (1838), 240.

Fossils

… implacable November weather. As much mud in the streets as if the waters had but newly retired from the face of the earth, and it would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn Hill.
— Charles Dickens, Bleak House, London, 1852, page 1.

Life has come to be regarded by the majority of biologists as forming one vast genealogical tree, the roots of which are buried deep down in the lowest fossiliferous strata, and the tops of whose branches, constituting the life that now exists on the globe, are alone seen above the surface.
— John Gibson, 'Fossil fishes of Scotland' in Science Gleanings in Many Fields (1884).
Fossils in marble, Sydney.


We are lucky to have fossils at all. It is a remarkably fortunate fact of geology that bones, shells and other hard parts of animals, before they decay, can occasionally leave an imprint which later acts as a mould, which shapes hardening rock into a permanent memory of the animal. We don't know what proportion of animals are fossilized after their death — I personally would consider it a very great honour to be fossilized — but it is certainly very small indeed.
— Richard Dawkins (1941 – ), The Blind Watchmaker, Penguin Books, 1988, p. 225.

David Davies, a Welsh mine foreman, was the first to make really large collections of plant material from different coal seams. He showed that even when the plants did not differ very much, there were differences in the proportions of different kinds, just as in one meadow you will find a great deal of clover among the grass, in another very little.
J.B.S.Haldane (1892-1964) Everything Has a History, Allen and Unwin 1951, page 50.
 
Fossils in a limy sandstone, W.A.
If a single well-verified mammal skull were to turn up in 500 million years-old rocks, our whole modern theory of evolution would be utterly destroyed. Incidentally, this is sufficient answer to the canard, put about by creationists and their journalistic fellow travellers, that the whole theory of evolution is an 'unfalsifiable' tautology. Ironically, it is also why creationists are so keen on the fake human footprints, which were carved during the depression to fool tourists, in the dinosaur beds of Texas.
— Richard Dawkins (1941 – ), The Blind Watchmaker, Penguin Books, 1988, page 225.

Soil

Erosion in a spoil heap, South Australia.
In the agricultural sense soils are the superficial layers, usually less than a foot in thickness, of disintegrated and decomposed rock material, which is mingled with organic matter, and furnishes the necessary conditions and materials for plant growth.
— G. W. Tyrrell, The Principles of Petrology, Methuen, 1929, p. 184.

As to the ground or soil, it is in general but very indifft — in some parts nothing but hard, solid rock, in others a black sand full of ant hills.  In some spots, however, it is better, in one place especially we have found some good strong clay of wh they have already begun to make bricks wh are said to be very good.
The Governor has taken several excursions inland many miles into the Country.  First a little to the Northward — here the ground and country are most wretched, nothing to be seen but impassable Rocks, thickets, & swamps.  Next he went more towards the S.W.  Here he met with better ground — also with blue shale, a thing likely to be of great service to the Settlement.  The wood is in general very ordinary & bad for building.
— George Mackaness (ed.), Some Letters of Rev. Richard Johnson, B.A., First Chaplain of New South Wales, 2 parts: Australian Historical Monographs, new series vols XX and XXI, Sydney: D.S.Ford, 1954, part I, page 19 (letter dated May 8, 1788). 

Some idea may be formed of the appearance of the country by what is seen on the South Head Road, near the Light House. At the distance of a mile from the Heads, the spectator comes to a spot from which he can behold nothing but rock blackened, with the effects of fire. Every tree, shrub, flower, or atom of grass, has been burnt to the very root; and accustomed as the eye is here to look with indifference upon large tracts of land around, with scorched and half consumed trees, one cannot contemplate the scenes we allude to without becoming sensible of an extraordinary sensation, produced by the air of desolation with which one is surrounded.
Cattle at this season are much distressed for want of water. The stockmen are obliged to drive them to the distance of many miles, even for the scanty supply which a small creek or rivulet affords.
The Australian (Sydney), 9 December 1826, 3.

Simulating sedimentation.
We are wealthy and wasteful but this can't go on. If we don't eat dog biscuits, we could end up eating our dog instead.
— Magnus Pyke (1908 – 1992)

Now I submit that we cannot say much which is sympathetic to our time unless we have assimilated our immediate tradition, which for this country is the conquest of soil and climate. Accordingly, it is a function of Biology in the University to provide this ingredient in education.
— Professor Eric Ashby, The Place of Biology in Australian Education, inaugural lecture, Sydney, 1939.


Climate and weather

In parts of Siberia the southern boundary of permanently frozen ground is receding poleward several dozen yards per annum.
— George Kimble, Scientific American, 1950.

While all the evidence goes to show that carbonic acid is now an almost invariable constituent of the air, it is one that requires least change in the physical conditions under which the earth exists to effect a change in its proportion. Minute as the proportion is, the delicacy of its relation to animal and vegetable life on the earth makes the maintenance of the apparently unstable equilibrium a matter of serious concern to mankind.
Scientific American, October 1883, quoted in Scientific American, October 1983, p. 11

Occasional droughts occur throughout the colony at periods varying from ten to fifteen years: and periodical floods of a destructive character have at various times caused a serious loss of life and property.
— George French Angas, Australia: a Popular Account, 1866, 140.

We live submerged at the bottom of an ocean of the element of air, which by unquestioned experiments is known to have weight, and so much, indeed, that near the surface of the earth, where it is most dense it weighs about one four-hundredth of the weight of water [actually more like 1/775]. Those who have written about twilight, moreover, have observed that the vaporous and visible air rises above us to about [80 kilometres]; I do not believe its height to be so great, since if it were, I could show that the vacuum would be able to offer much greater resistance than it does…
— Evangelista Torricelli, in a letter to Michelangelo Ricci, 1644.

Not that there is anything very mysterious ... if it is remembered that a barometer is merely a weighing balance under another name. Instead of weighing a letter or a parcel against a series of standardised weights, it weighs the whole mass of air above it, right to the top of the atmosphere, against a column of mercury. An area of high pressure … is the outward and ground-level sign of a mountain of air above. The mountain of air is heavy. So the mercury has to rise higher…
— A. W. Haslett, Unsolved Problems of Science, London 1937.

Attributed bits, lacking sources.

I could more easily believe that two Yankee professors would lie than that stones would fall from heaven.
— Thomas Jefferson (1743-1826), in 1807.

I agree. But I wonder what it would have looked like if the sun had been circling the earth.
— Ludwig Wittgenstein (1889-1951), on being told how foolish the ancients were for accepting the Ptolemaic system.

My own suspicion is that the universe is not only queerer than we suppose, but queerer than we can suppose.
— J. B. S. Haldane (1892 – 1964)

The most incomprehensible thing about the world is that it is comprehensible.
— Albert Einstein (1879 – 1955)


Saturday, 18 November 2017

Inventing writing

Another sample from Not Your Usual Science. Be patient... I got side-tracked to do an essay on poisons (one of my favourite topics) that looks like turning into a book.

So since we are talking about writing, there were a few conditions that would need to be met before writing caught on. As a rule, nomads would not wish to make or carry around records, especially when they were written on heavy clay tablets. So people probably needed something to write on, something to write with, and a useful place where the written records could be kept. Inscribed stones might appear, but unless there were other uses, the whole writing thing might be a bit of a flash in the pan.

The Sumerians explained the invention of writing with a sort of fairy tale about a messenger who was so tired when he reached the court of a distant ruler that he could not deliver his message from the king of Uruk. Hearing this, the Sumerian king took a piece of clay, flattened it, and wrote a message on it.

That story has a few sizable holes in it. How would the person receiving the message know what the symbols meant? Then again, what can we expect in a tale about events that happened so long ago, especially when it was probably not written down?
Hieroglyphs. [Christine Macinnis]

The Egyptians said the god Thoth (the scribe and historian of the gods) invented hieroglyphs; the Sumerians either credited the unnamed king who wrote to Uruk — or the god Enlil. The Assyrians and Babylonians said the god Nabu was the inventor, while the Mayans said they owed their writing system to the supreme deity Itzamna who was a shaman, a sorcerer, and creator of the world.

More plausibly, Chinese tradition says writing was invented by a sage called Ts’ang Chieh, a minister to the legendary Huang Ti (the Yellow Emperor).

How many of these can you "read"?

Some writing used characters to represent syllables, other writing systems used a symbol just to mean a letter-sound (as we do in English), while still others used a symbol to mean a word or idea, as happens in Chinese.

These word/idea symbols are called ideograms or logograms (meaning each symbol is an idea), and they can mean the same thing in different languages, rather like the signs in airports or the numeral 5. Just to confuse things, some of those airport signs are also called pictograms, because they are pictures of what they represent.

Then again, Egyptian hieroglyphs are a mixture of alphabetic characters and ideograms, with a few extra symbols to clarify the meaning. Few writing systems were designed from scratch: they just grew, a bit like English spelling!

The Sumerians lived in what is now southern Iraq. Ignoring the myth quoted above, their writing probably started with marks on clay that Sumerian accountants used around 3300 or 3200 BCE to record numbers of livestock and stores of grain, the sorts of records societies need, once they start farming. Over about 500 years, the symbols became more abstract, allowing ideas to be written down as well.

Egyptian hieroglyphs (literally, the word means ‘priestly writing’) are unlike Sumerian cuneiform. They probably developed separately, but maybe the Egyptians got the basic idea of marks to represent language from other people. The Harappan script from the Indus valley in what is now Pakistan and western India, seems to be another independent growth, though nobody has learned to read it yet. The civilisation which established it collapsed in about 1900 BCE, so the script did not develop further.

The oldest alphabets that we know about seem to have emerged in Egypt around 1800 BCE. They were developed by people speaking a Semitic language, and the writing only covered consonants. These variants later gave rise to several other systems: a Proto-Canaanite alphabet at around 1400 BCE and a South Arabian alphabet, some 200 years later. There were others, but we will stay with those examples.

The Phoenicians adopted the Proto-Canaanite alphabet which later became both Aramaic and Greek, then through Greek, inspired other alphabets used in Anatolia and Italy, and so gave us the Latin alphabet, which became our modern alphabet. Aramaic may have inspired some Indian scripts, and certainly became the Hebrew and Arabic scripts. Greek and Latin inspired Norse runes and also the Gothic and Cyrillic alphabets.
The Rosetta Stone solved a lot of puzzles.


Now the way was open for poetry, literature, history, philosophy, mathematics, recipes, technical information, tax, weather and astronomical records, religious teachings and more to be written down and passed from one generation to another, without the need for story-teller, whose main role was to memorise everything.

Just occasionally, we can get lucky, but most ancient systems are only ‘cracked’ by intensive work. Carved in 196 BCE, the Rosetta stone was found in 1799 by French soldiers fighting in the Napoleonic Wars in Egypt. The inscriptions all said the same thing, but in Greek, in Egyptian demotic script, and in hieroglyphics. In other words, for the first time, the mysterious hieroglyphics could be compared with a translation.

The content is fairly boring, a list of taxes repealed by Ptolemy V, but the use of three languages made the stone very exciting. When the French were defeated, it was handed over to the British, and placed on display at the British Museum in 1802.

The Rosetta Stone was described by its original French finders as ‘une pierre de granite noir’, a stone of black granite, but this was not a geologist’s granite. This term ‘black granite’, conferred in less geologically rigorous times, was applied 200 years ago by Egyptologists to a dark, fine-grained stone from Aswan. The British have always called the stone basalt, since they gained possession of it during the Napoleonic wars. Neither description is correct.

Recent cleaning and a careful examination has shown that the stone was probably sourced from Ptolemaic quarries to the south of Aswan. Probably nobody cared much what the stone was, as the important question was the text, not the material it was inscribed on.

From a geological viewpoint, though, it is neither a basalt nor a granite, but a fine-grained granodiorite, perhaps modified by metamorphic and/or metasomatic processes. For most purposes, we can think of it as a granodiorite, but in chemical terms, say the researchers who have looked at it, the stone is more like tonalite.

Granodiorite has quartz and plagioclase, but it also contains biotite and hornblende, and it is typically darker than granite. All the same, it is hard to see how it could be mistaken for basalt, but the secret to the issue lies in the reference to recent cleaning.

The confusion arose because the stone has been covered for many years with black carnauba wax, remnants of printer’s ink, used to obtain contact-prints of the inscriptions, finger grease and dirt, with white paint in the incised lettering to make it stand out.

When the stone was being cleaned in 1998, it became apparent that the stone was not basalt at all. Work based on petrographic examination and analysis of a fragment from the Rosetta Stone showed conclusively that it is a granodiorite. To be precise, the Rosetta Stone is made of a granodiorite that has probably been exposed to some extra heating. It is not basalt, but it should not be taken for granite, either.

Saturday, 4 November 2017

The First Koel

Canowie Brook, Budawang Ranges.
I have been busy, putting the final touches on (working title) Survivor Kids, a book scheduled to hit the shelves in February 2020. It's about how to survive in the wilds, places like the above, how not to get lost, stuff like that. I put the finishing touches on it last night, and now I will slowly and carefully start to polish it. And now, I have more time to muse, until the edits of Australian Backyard Earth Scientist begin coming back.

Sherlock Holmes would not have approved of the dog next door.  It started barking into the pre-dawn gloom, just a few nights ago.  When looking into the case known as The Hound of the Baskervilles, Mr Holmes was more interested in dogs that did not bark — as am I, come to think of it!

I had a good idea of what had provoked the dog to action, but I had to wait until last night to confirm it, when, from a deep slumber, I heard a shriek behind our house.

It was a frightful cry, very hard to describe.  The nearest I can get would be to suggest that it sounds rather like an elderly naked duchess being goosed with ice-cold tongs.  But if it is hard to describe, the meaning of the noise is crystal clear.  The koels have arrived.

In England, they write to The Times, overjoyed to report the first cuckoo of spring.  We Sydneysiders write to the Herald, rather more underjoyed about the first koel, even though it, too, is a cuckoo.  The name (it rhymes with Noel, as in ‘The First Noel’), reflects the sound of its call, described in one of my reference books as ‘koo-well’.  This description fails to convey the full flavour and savour of the bird's cry, and so I prefer the goosed duchess.  Of course, that might just be because I never did have much time for duchesses . . .

The koels fly south around the equinox or a few weeks later, coming down from Papua-New Guinea, the large lizard-shaped island that lies above the right-hand side of Australia on your maps.  Having arrived, they choose territories where they can exploit the local feathered baby-sitting facilities, just like their cuckoo relatives in other parts of the world.  Then in the wee small hours of our early spring mornings, around 3.30 or 4 am, they start their calling. This year, they seem to have arrived later than usual.

We really should not blame the koels, for they are simply staking a claim to a territory, although the resource they care most about is nesting sites for their target species.  They are too late this year, for  the noisy miners have already hatched their first brood for the year, but there will be a second sitting, a second chance, later in the year, when high summer arrives.  In a few weeks, the koels will realise that they need to play a waiting game for a while, and they will quieten down.  Maybe.  In the meantime, we will suffer fitful snoozing from false dawn to sunrise for a few weeks.

In Australian English, there are many different meanings of ‘clock’.  It can be variously a time-piece, an embroidered design on a sock, or a twelve-month prison sentence.  ‘To clock’ can be to give a punch or a blow, or it can mean to time (a horse or a runner), or it can have other lesser meanings as well.

Our koels may be Antipodean cuckoos, but nobody in their right mind would wish to make a koel clock that would bellow each quarter-hour so unmelodiously.  On the other hand, right now, most of us Antipodeans would relish the prospect of being able to clock the koels.  Hard.